Multimodal Crossing Equipment --> ITS Roadway Equipment:
multimodal crossing status

Definitions

multimodal crossing status (Information Flow): Indication of operational status and pending requests for right-of-way from equipment supporting the non-highway mode at multimodal crossings.

Multimodal Crossing Equipment (Source Physical Object): 'Multimodal Crossing Equipment' represents the control equipment that interfaces to a non-road based transportation system at an interference crossing with the roadway. The majority of these crossings are railroad grade crossings that are more specifically addressed by the "Wayside Equipment" terminator. This multimodal crossing terminator addresses similar interface requirements, but for other specialized intersections like draw bridges at rivers and canals. These crossings carry traffic that may take priority over the road traffic at the intersection. The data provided will in its basic form be a simple "stop road traffic" indication. However more complex data flows may be provided that give the time at which right-of-way will be required and the duration of that right-of-way requirement.

ITS Roadway Equipment (Destination Physical Object): 'ITS Roadway Equipment' represents the ITS equipment that is distributed on and along the roadway that monitors and controls traffic and monitors and manages the roadway. This physical object includes traffic detectors, environmental sensors, traffic signals, highway advisory radios, dynamic message signs, CCTV cameras and video image processing systems, grade crossing warning systems, and ramp metering systems. Lane management systems and barrier systems that control access to transportation infrastructure such as roadways, bridges and tunnels are also included. This object also provides environmental monitoring including sensors that measure road conditions, surface weather, and vehicle emissions. Work zone systems including work zone surveillance, traffic control, driver warning, and work crew safety systems are also included.

Included In

This Triple is in the following Service Packages:

This Triple is described by the following Functional View Functional Objects:

This Triple is described by the following Functional View Data Flows:

This Triple has the following triple relationships:

Communication Solutions

  • (None-Data) - Secure Internet (ITS) (32)
Solutions are sorted in ascending Gap Severity order. The Gap Severity is the parenthetical number at the end of the solution.

Selected Solution

(None-Data) - Secure Internet (ITS)

Solution Description

This solution is used within Australia, the E.U. and the U.S.. It combines standards associated with (None-Data) with those for I-I: Secure Internet (ITS). The (None-Data) standards include an unspecified set of standards at the upper layers. The I-I: Secure Internet (ITS) standards include lower-layer standards that support secure communications between ITS equipment using X.509 or IEEE 1609.2 security certificates.

ITS Application Entity
Mind the gap

Development needed
Click gap icons for more info.

Mgmt
Facilities

Development needed
Security
Mind the gapMind the gap
TransNet
Access

Internet Subnet Alternatives
TransNet TransNet

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Access Access

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

ITS Application ITS Application

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Mgmt Mgmt

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Facility Facility

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Security Security

TempBCL2 TempSTDL2

TempBCL3 TempSTDL3

TempBCL4 TempSTDL4

TempBCL5 TempSTDL5

Note that some layers might have alternatives, in which case all of the gap icons associated with every alternative may be shown on the diagram, but the solution severity calculations (and resulting ordering of solutions) includes only the issues associated with the default (i.e., best, least severe) alternative.

Characteristics

Characteristic Value
Time Context Recent
Spatial Context Adjacent
Acknowledgement False
Cardinality Unicast
Initiator Source
Authenticable True
Encrypt False


Interoperability Description
Local In cases where an interface is normally encapsulated by a single stakeholder, interoperability is still desirable, but the motive is vendor independence and the efficiencies and choices that an open standards-based interface provides.

Security

Information Flow Security
  Confidentiality Integrity Availability
Rating Low Moderate Low
Basis There should be no sensitive information in this flow. Raise to MODERATE if reverse engineering of a proprietary interface is a concern. This information can indicate when a road is closed to due a drawbridge being raised, which has a significant effect on traffic. If this information were falsified, it could have a significant negative effect on mobility over a large area. Should not require rapid response or frequent update. Raise to MODERATE if frequent real-time updates are part of the system scope.


Security Characteristics Value
Authenticable True
Encrypt False